OSP-New Group V Base Fluid for Manufacture of Sulfonate Greases

Dr. Govind Khemchandani

The Dow Chemical Company

NLGI's 81STAnnual Meeting, Palm Beach Gardens, Florida, USA June14-17, 2014

Perry Byrd Mid-South Sales, Inc Jeff St. Aubin Chemtool Incorporated

gvkhemchandani@dow.com Tel:979-238-4045

- To introduce oil soluble PAGs (OSPs) a new type of Group V base oil and performance additive
- New OSP technology offers many benefits in grease formulations
- OSPs offer options to upgrade hydrocarbon oils, naphthenic oils and synthetic base fluids to boost solvent power and improve additive compatibility
- OSP with inherent corrosion and hydrolytic improvement characteristics provide an option for formulators to use vegetable oil/ester for grease formulation
- OSP-Overbased Calcium Sulfonate (OBCS) Complex Grease provides significantly high drop point, shear stability, low friction and water washout characteristics

- Grease is a combination of oil, additives and a thickener
- The oil and additives serve the same function as in a lubricating oil
- The thickener converts the liquid lubricant to a semi-solid lubricant
- A grease can't be any better than its base oil

molecular weights, viscosities and functional performance

Attributes of OSPs versus Traditional PAGs

Oil Soluble PAGs offer formulators greater flexibility and especially as performance BASE FLUIDS in hydrocarbon lubricants & GREASES

OSPs derived from downstream derivatives of butylene oxide

	KV40 cst	KV100 cst	Viscosity Index	Pour Point ⁰C	Flash Point, °C	Aniline Point, °C	
	ASTM D445	ASTM D445	ASTM D2270	ASTM D97	ASTM D92	ASTM D611-01	
OSP-A	18	4	123	-41	204	n/d	
OSP-B	32	6.5	146	-57	216	<-30	
OSP-C	46	8.5	164	-57	210	<-30	
OSP-D	68	12	171	-53	218	<-30	
OSP-E	150	23	186	-37	228	<-30	
OSP-F	220	32	196	-34	226	-22	
OSP-G	320	36	163	-37	230	<-30	
OSP-H	460	52	177	-35	235	<-30	
OSP-I	680	77	196	-30	243	<-30	

- Lower Hygroscopicity
- Friction control in hydrocarbon oils
- Hydrolytic stability additive in esters
- Corrosion Protection Enhancement in PAG
- Solvent Power and Low Aniline Point additive for base oils for greases

OSPs Hygroscopicity vs.PAG structures

Hygroscopicity and PAG Structure

Test conditions: 50°C, 80% relative humidity 250ml sample in a 400ml glass beaker (diameter. 8cm)

EO/PO = EO/PO random copolymer and ISOVG-46

PO = PO homo-polymer and ISOVG-46

OSP-46 and 220 are new oil soluble PAGs containing BO

Hygroscopicity of oil soluble PAGs is significantly lower than conventional PAGs
PAGs act as polymeric sponges binding water within the structures (water is not free at levels of several thousand ppm)

Dow

In a Group III Base Oil

Friction Control of OSPs

In a PAO-4 Base Oil

Mini-Traction Machine, steel ball on steel disc, temperature 80°C, slide roll ratio = 50%, load = 50N

Evidence of friction control behavior in Group III and IV hydrocarbons

Friction Performance as Additives in PAOs

Mini-traction machine, steel ball on steel disc, temperature 80°C, speed 15 mm/sec, Slide roll ratio = 10%, Pressure = 0.9GPa

Polyalphaolefin is a PAO-8 base oil (un-additized)

OSPs may offer another choice to esters and other surface active additives

Hydrolytic stability: Modified ASTM D2619 – extended time

		Vegetable Oil	Vegetable Oil + 10% OSP-C	Synthetic Polyol ester	Synthetic polyol ester + 10% OSP-C
KV ₄₀	mm²/sec	32	34.5	22.9	23.9
Viscosity index		225	220	144	151
	_				
TAN change	mg KOH/g	0.4	0.1	0.07	0.05
Total acidity of water layer	mg KOH/g	7.3	1.2	3.2	1.2
Copper appearance		3a	1b	2c	1b
KV ₄₀ change	%	+4.0	+ 4.0	-4.9	0.9
•					

OSP appears to act as a polymeric sponge for water, rendering it less active

OSPs and PAG Corrosion Protection

%PAG (EO/PO random copolymer)97.0Additive package2.75Sodium dialkylnaphthalene sulphonate*0.25

24 hours ASTM D665 A and B

De-ionised Water Synthetic sea water

De-ionised Water

Synthetic sea water

	%
PAG (EO/PO random copolymer)	92.0
OSP-46	5.0
Additive package	2.75
Sodium dialkylnaphthalene sulphonate*	0.25

* Corrosion inhibitor

Comparison of Aniline Points

Typical values - Aniline points using ASTM D611-01

Oil Soluble PAGs can provide formulators another option for adding back some solvency power to Group II, III and IV base oils

NO: Typical Naphthenic Oil PAO: Typical Poly alpha Olefin

Typical Properties: OSP- OBCS Complex Grease

Penetration @25°C (77°F), mm/10	ASTM D 217	
Worked 60 Strokes		285
Shoar Stability A W100K No Significant Change	ASTM D 217	2
Shear Stability, 2, WTOOK, NO Significant Change		-3
Dropping Point, °F (°C)	ASTM D 2265	>640(>338)
4 Ball Wear Test, mm Scar Diameter	ASTM D 2266	0.40
4-Ball Weld, Kg	ASTM D 2596	400
Water Washout, @ 175°F (79°C), % Loss	ASTM D 1264	0.7
Timken OK load, lbs	ASTM D 2509	55
Water Corrosion - Rust Preventative Properties of Greases	ASTM D 1743	Pass
Oxidation Stability-Pressure Vessel Oxidation	ASTM D 942	
Δ P, psi ,100 hours		1
PDSC,180°C, Minutes	ASTM D 5483	145
Salt Fog Test	ASTM B 117	500+hours
SRV : Friction & Wear properties:	ASTM D 5707	
Scar Diameter, mm	Fig	0.511
Coefficient of Friction	Fig	0.125
SRV: EP Properties	ASTM D 5706	
Pass Load, N	Fig 4	1400
Base Oil Characteristics		
Viscosity @ 40°C cSt	ASTM D 445	334
Viscosity @ 100°C cSt	ASTM D 445	44
Viscosity Index	ASTM D 2270	189

EP Property OSP-OBCS Complex Grease, ASTM D 5706

Friction Profile OSP-OBCS Complex Grease, ASTM D 5707

		SI	RV® 4 TE	EST SYS	TEM					
HW Config	Dscelation				Printoul Date		4/10/2014 10:30:02 AM			
TestNo	m02506				Measurement Date		4/9/2014 11:12:46 AM			
Operator	NAC				Text Mode		ASTM 5707_1000.opr			
Upper Specmen	Ball 10mm				i ppe of lext			Literate		
Lower Specimen	05	Dish 34 - 7 Pere 1000 PR			Note					
Editor Spacement		NATIVATION DA	2010							
450 0.333									1000	2022
460 0.270									1800	3600
409 0.240									1600	3200
358 0.210									1400	2800
307 0.180									1200	2400
351 0.135									1200	2,4030
256 0.150									1000	2000
l A										
										1.000
234 0120									800	1600
153 0.090									600	1200
102 0.060									400	800
51 0.030									200	400
										100
0 0.000									0	0
0	12:03 24:07	36:10	48.14	1:00:17	1:12:21	1:24:25	1:36:28	1:48:32		
Frietion coeff	1 min	f max	115	130	190	120	Wk [mm]	Wear (man)		
Frequency (Hz)	Results: 0.12	0,162	0.128	0.124	0.124	0.124				
Load [N]										
Strake jum	Diamet	or:0.511 mm		and the second se	A SHORE SHOW AND A SHOW					

- New OSP technology offers many benefits in grease formulations
- OSPs offer options to upgrade hydrocarbon oils, naphthenic oils and synthetic base fluids to boost solvent power and improve additive compatibility
- OSP-based OBCS Complex Grease provides significantly higher drop point & EP characteristics
- OSP with higher solvency, inherent hydrolytic stability, high VI, and low friction coefficient offers formulators an option to formulate stable OBCS Complex grease

THANK YOU

