Dieses Programm erstellt eine vorläufige Konstruktion für das Lagerspiel des Zapfendurchmessers und die Drehzahl des angegebenen Lagers. Der Wert für das Lagerspiel wird anhand eines relativen Lagerspiels mithilfe der folgenden empirischen Formel berechnet:
$\psi=0.0008 \cdot \sqrt[4]{V_{\mathrm{H}}}$
Dabei gilt:

ψ	Relatives Spiel $[-]$
V_{H}	Umfangsgeschwindigkeit des Zapfens $\left[\mathrm{m} \mathrm{s}^{-1}\right]$

Das relative Lagerspiel ist ein wichtiger Konstruktionsparameter, welcher sich auf die Lagereigenschaften auswirkt. Der Bereich liegt in der Regel zwischen 0.0005 und 0.004. Kleine Werte für das relative Lagerspiel eignen sich für Lager mit einem hohen spezifischen Druck und geringer Gleitgeschwindigkeit sowie umgekehrt

Je höher das relative Lagerspiel ist, umso niedriger ist die Tragfähigkeit des Lagers. Hierdurch erhöht sich das Risiko der Zapfenvibration und der Kavitation der Lagerauskleidung. Die Geschwindigkeit des Gleitzapfens wirkt sich maßgeblich auf die Auswahl des radialen Lagerspiels aus. Diese Auswahl basiert auf dem Auskleidungsmaterial und dem Verwendungszweck:

Babbitt-Metall	$(0.5 \sim 1) \cdot 10^{-3}$
Bronze	$(0.8 \sim 2) \cdot 10^{-3}$
Aluminiumlegierungen	$(1.2 \sim 2.5) \cdot 10^{-3}$
Gusseisen, Graphit	$(2 \sim 3) \cdot 10^{-3}$
Kunststoffe	$(1.5 \sim 10) \cdot 10^{-3}$

Für schmale und präzise Lager werden niedrigere Werte ausgewählt, da keine Kantenbelastung auftritt.

Reduzierung des Innendurchmessers der Buchse, da diese in das Lagergehäuse gepresst wird:
Die Buchse wird in das Lagergehäuse mit relativen Uberstand gepresst:
$\vartheta=\frac{\Delta \mathrm{D}_{1}}{\mathrm{D}_{1} \cdot 10^{3}}$
Dabei entsteht etwas Kontaktdruck:
$p_{1}=\vartheta \cdot \frac{E_{L} \cdot E_{P}}{E_{P} \cdot\left(C_{L}+\nu_{L}\right)+E_{L} \cdot\left(C_{P}-\nu_{P}\right)}$
Dabei gilt:

$$
C_{\mathrm{L}}=\frac{\left(\mathrm{D}_{2} / D_{1}\right)^{2}+1}{\left(\mathrm{D}_{2} / D_{1}\right)^{2}-1} ; \quad C_{p}=\frac{\left(\mathbb{D}_{1} / d\right)^{2}+1}{\left(\mathbb{D}_{1} / d\right)^{2}-1}
$$

Empfohlene Größe des relativen Überstands:

$\vartheta \approx 1.3 .10^{-3}$ - Lagergehäuse aus Aluminiumlegierung;
$\vartheta \approx 0.6 .10^{-3}$ - Lagergehäuse aus Gusseisen oder Stahl.
Die Änderung des Lagerspiels durch das Einpressen der Buchse wird mithilfe der folgenden Gleichung berechnet
$\Delta d_{p}=-\frac{p_{1} \cdot d}{E_{p}} \cdot\left(\frac{2}{1-\left(d / D_{1}\right)^{2}}\right) \quad[m m]$

Anderung des Lagerspiels durch den radialen Temperaturgradienten

Die Lagerbauteile dehnen sich aufgrund der während des Betriebs zunehmenden Temperatur aus. Durch den radialen Temperaturgradienten ändert sich das radiale Lagerspiel in folgendem Maße
$\Delta \varphi_{T}=\left(\alpha_{L}-\alpha_{H}\right)(1-B)\left(T_{V}-T_{U}\right)-0.6\left(\alpha_{L} \Delta T_{r L}-0.75 \alpha_{H} \Delta T_{r H}\right.$
Dabei gilt

$$
B=\frac{\frac{4 \cdot s_{e} \cdot E_{p}}{D_{1}} \cdot\left(1-\frac{s_{e}}{D_{1}}\right) \cdot\left[1-\nu_{L}+\left(1+\nu_{L}\right) \cdot\left(\frac{D_{2}}{D_{1}}\right)^{2}\right]}{\frac{4 \cdot s_{e} \cdot E_{p}}{D_{1}} \cdot\left(1-\frac{s_{e}}{D_{1}}\right) \cdot\left[1-\nu_{L}+\left(1+\nu_{L}\right) \cdot\left(\frac{D_{2}}{D_{1}}\right)^{2}\right]+E_{L} \cdot\left[\left(\frac{D_{2}}{D_{1}}\right)^{2}-1\right] \cdot\left[1-\nu_{P}+\left(1+\nu_{p}\right) \cdot\left(1-\frac{2 \cdot s_{e}}{D_{1}}\right)^{2}\right]}
$$

Die effektive Stärke der Buchse ist: $\mathrm{s}_{\mathrm{e}}=\left(\mathrm{D} 1-\mathrm{d} \mathrm{s}_{\mathrm{V}}\right) / 2[\mathrm{~mm}]$
Der radiale Temperaturgradient zwischen der äußeren Lageroberfläche und der Gleitfläche beträgt:
$\Delta T_{r L} \approx 5 \ldots 15\left[{ }^{\circ} \mathrm{C}\right]$
Der radiale Temperaturgradient zwischen der Gleitfläche und der Wellenmitte beträgt
$\Delta T_{r H} 11.0$ pt $\approx 2 \ldots 5\left[{ }^{\circ} \mathrm{C}\right]$

Die Änderung des Lagerspiels durch den radialen Temperaturgradienten wird mithilfe der folgenden Gleichung berechnet:
$\Delta d_{T}=\Delta \varphi_{T} d[\mathrm{~mm}]$

0	Zapfendurchmesser [mm].
D_{1}	Innerer Lagerdurchmesser [mm].
D_{2}	Äußerer Lagerdurchmesser [mm].
Δd_{p}	Änderung des Lagerspiels durch Klemmung der Buchse infolge von Druck [mm].
$\Delta \mathrm{at}$	Änderung des Lagerspiels durch den radialen Temperaturgradienten [mm].
Δd_{1}	Mittelwert für die Abweichungen infolge des Einpressens der Buchse in den Lagerkorper [$\mu \mathrm{m}$].
E_{L}	Elastizitätsmodul des Lagermaterials [Mpa].
E_{p}	Elastizitatsmodul des Buchsenmaterials [Mpa].
Se	Effektive Dicke der Buchse [mm].
s_{v}	Dicke der Buchsenauskleidung [mm].
T_{u}	Temperatur in der năheren Umgebung des Lagers [$\left.{ }^{\circ} \mathrm{C}\right]$.
Tv	Mittlere Temperatur des Schmiermittels am Lageraustritt [$\left.{ }^{\circ} \mathrm{C}\right]$.
ΔT	Radialer Temperaturabfall zwischen der äußeren Lageroberfläche und der Gleitfläche [$\left.{ }^{\circ} \mathrm{C}\right]$.
$\Delta T_{\text {rH }}$	Radialer Temperaturabfall zwischen der üußeren Lageroberfläche und der Gleitfläche [$\left.{ }^{\circ} \mathrm{C}\right]$.
$\Delta T_{\text {rL }}$	Radialer Temperaturabfall zwischen der Gleitflache und der Wellenmitte [$\left.{ }^{\circ} \mathrm{C}\right]$.
α_{L}	Koeffizient für die Wärmeausdehnung des Lagerkörpers [$\left[0 \mathrm{C}^{-1}\right]$.
α_{H}	Koeffizient für die Warmeausdehnung des Lagerzapfenmaterials $\left[{ }^{\circ} \mathrm{C}^{-1}\right]$.
$v_{\text {L }}$	Poissonsche Konstante für das Lagerkörpermaterial [-1 .
v_{p}	Poissonsche Konstante für das Buchsenmaterial [-].
u	Relativer Überstand [-].

Source: Autodesk.com

