Diesel Fuel Lubricity Requirements for Light Duty Fuel Injection Equipment

Conference Paper · March 2003						
DOI: 10.1314	0/2.1.4308.9922					
CITATIONS		READS				
3		360				
2 author	2 authors, including:					
	Klaus Meyer					
	Bosch					
	3 PUBLICATIONS 3 CITATIONS					
	SEE PROFILE					

Diesel Fuel Lubricity Requirements for Light Duty Fuel Injection Equipment

CARB Fuels Workshop

Sacramento, CA Feb. 20, 2003

Klaus Meyer and Thomas C. Livingston Robert Bosch GmbH

This presentation covers the interests of

- Robert Bosch GmbH
- Delphi Diesel Systems
- Denso Corporation
- SiemensVDO Automotive AG
- Stanadyne Automotive Corporation

Our Mission is to increase the number of Diesel vehicles in the USA especially Passenger Cars + SUVs + Light Duty (LD)

- Build a Cleaner Environment
- Conserve Energy Resources
- Reduce Fuel Consumption / CAFE
 - → Lower CO₂ Emission
- → For Diesel Fuel Injection Equipment (DFIE) Lubricity is the most valuable and crucial property

Lubricity Requirements for DFIE

Scope of Presentation

Introduction Experience in Europe Comparing USA and Europe

- Vehicles and DFIE
- Survey Data

Requirements

- HFRR method
- Sensitivity of DFIE to HFRR
- Rating Table for Assessed Pump Wear
- Endurance Performance

Data for Diesel Fuels with HFRR between 400 - 650 µm

Pump Performance: Rotary pumps, Common Rail Systems

Engine Results

Conclusions

A Brief Review

- Sweden introduced sulphur-free fuels in 1990,
 California followed in 1993 with low-sulphur fuels
 - → Failures of fuel-lubricated injection pumps (for passenger and light duty vehicles)
- Lubricity identified as cause
 - → Hydroprocessing for desulphurization reduces lubricity enhancing fuel components
- All DFIE manufacturers afflicted
- → Process to define wear test method and lubricity limit for fuel spec: HFRR (ISO 12156-1, -2, ASTM D-6079)
 - ® EN 590 et al. Lubricity Limit =460 μm SLBOCLE (ASTM D-6078/99)

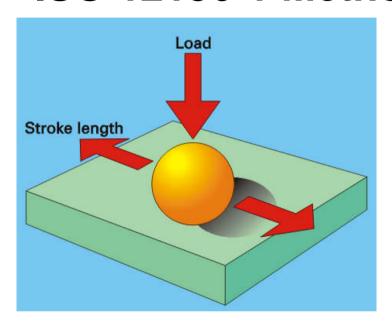
Current Situation in EU

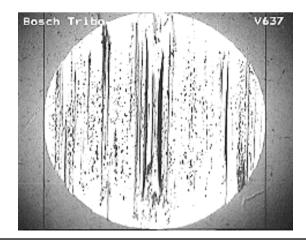
- → In Europe 40 % of new cars are Diesel vehicles:
 - → Passenger and Light Duty vehicles (e.g. SUV)
- EN 590 lubricity spec. (HFRR 460 μm max.) successfully prevents field problems
- → Diesel vehicles improve fuel consumption by 30 % compared to SI engines
- Diesel vehicles have low fuel consumption (up to 78 mpg)
- → Diesel vehicles produce lower CO₂ emissions
- Diesel vehicles provide low service costs and high service intervals
- Drivers enjoy driving diesel vehicles due to superior torque characteristics
- Majority of High Pressure DFIE is fuel-lubricated

Main Differences in Diesel Vehicles

	Тс	oday	Future			
		4	•			
	U.S. / California	EU	U.S. / California	EU		
Vehicles	Heavy Duty	• Passenger	• Light Duty	• Passenger		
	Light Duty	Light Duty	Heavy Duty	Light Duty		
		Heavy Duty	 Passenger 	Heavy Duty		
DFIE	• Inline pumps	Common Rail	Inline pumps	Common Rail		
	• UIS/UPS	• UIS/UPS	• UIS/UPS	• UIS/UPS		
	Common Rail	• Rotary pumps	Common Rail	• Rotary pumps		
	Rotary pumps		Rotary pumps			
Lubricity requirement	(+)	++	++	++		
Lubricity specification	U.S.A.: none CA: SLBOCLE guideline	HFRR 460 µm max.	HFRR 460 µm max.	HFRR 460 µm max.		

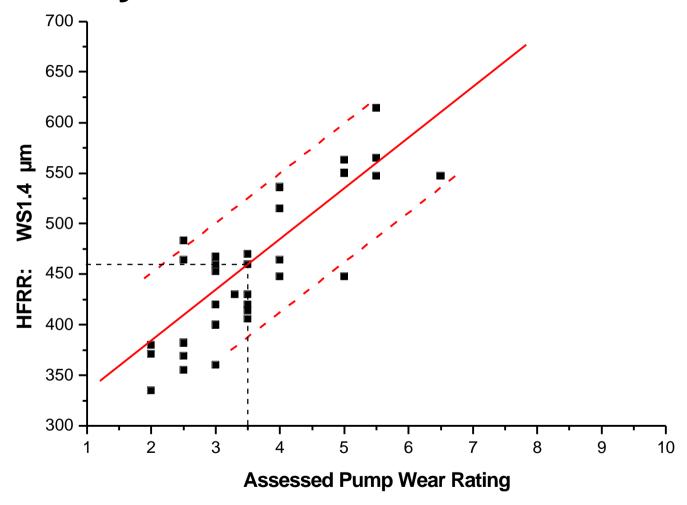
Samples from Summer 2002


Property	Unit	U.S.A.	Europe	Assessment of	
			(EN 590)	U.S.A. Quality	
Density	kg/m³	813 863	820 845	wide range	
Viscosity	c.St. (40 °C)	2.1 3.2	2.0 4.5	o.k.	
Dist. 95% vol rec.	°C	324 344	< 360	o.k.	
Total Aromatic Cont.	%	16 46	n.a.	many high numbers	
Cetane No.		44 57	> 51	many low numbers	
Sulphur	mg/kg	23 416	< 350	not o.k. for aftertreatment	
Water	mg/kg	42 96	< 200	o.k.	
Total Contamination	mg/kg	0.8 3.1	< 24	some high numbers	
(particulates)				(EN590 limit too high)	
Lubricity	μm (HFRR 60C)	351 648	< 460	80% of samples > 460 μm	
Alcohol	% vol.	< 0.1	n.a.	o.k.	


ISO 12156-1 Method

Test conditions:

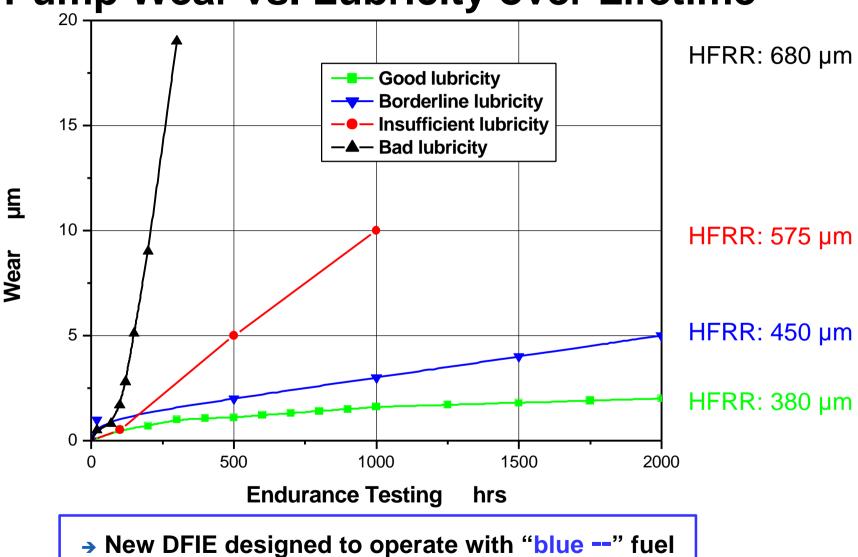
Applied load	200 g ± 0.01 g
Stroke length	1 ± 0.02 mm
Frequency	50 ± 1 Hz
Test duration	75 ± 0.1 min
Fluid temperature	60 ± 2 °C
Fluid volume	2 ± 0.20 ml
Bath surface	6 ± 1 cm ²



Sensitivity of DFIE to HFRR

→ Linear regression: Pump wear 3.5 ==> WS1.4 = 454 µm

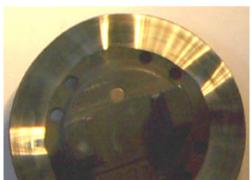
Rating of Pump Wear


Table to Assess Pump Wear

Component	Wear rating: $1 - 3.5$ Durability + performance = 100%		Wear rating: 4 – 6 Durability reduced to 20 %		Wear rating: 7 – 10 Durability reduced to 1 % Immediate failure	
	Type of wear	Wear rate	Type of wear	Wear rate	Type of wear	Wear rate
Cam plate runway	rolling and abrasive	< 1 μm	seizure and fatigue	1 – 30 μm	fatigue	not determinable
cam plate centre	fretting	1 - 3 μm	fretting	3 - 10 μm		> 10 μm
cam plate claws	fretting	< 10 μm	rolling and fretting	10 - 20 μm	fretting seizure	not determinable
Roller	rolling	< 1 μm	seizure and fatigue	1 - 5 μm	seizure and fatigue	not determinable
Roller bolt - point of contact to roller	rolling	< 1 μm	fretting and seizure	1 - 10 μm	seizure	>10 μm
- point of contact to roller ring	fretting	< 10 μm	fretting	10 - 15 μm	seizure	>15 µm
Fuel pump - blades	fretting	< 10 μm	fretting	10 - 200 μm	fretting and seizure	not determinable
- raceway	fretting	1 – 2 μm	fretting	2 - 100 μm	fretting and seizure	not determinable

→ Pump wear must not exceed "green" zone to meet customer expectation

Pump Wear vs. Lubricity over Lifetime



VE - Rotary Pump with HFRR 450 µm Fuel

Wear rating = 3.5

Bolts: slight scuffing Supply pump vanes: increased abrasive wear

- → Fuel represents borderline EU quality
- → Fuel adequate for purpose

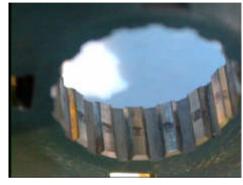
BOSCH

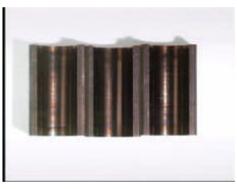
VE - Rotary Pump with HFRR 650 µm Fuel

Wear rating = 8

Cam plate: 30 µm Rollers: Seizure Bolt: 15 µm Piston: Broken

- → Fuel represents worst case U.S. lubricity
- → Fuel unfit for purpose



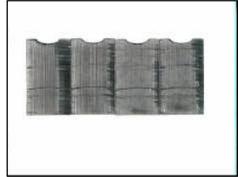

Pump Wear with HFRR Range 400 to 650 µm

VP44 - Rotary Pump with HFRR 400 μm Fuel

Wear rating = 3.0


Supply pump, roller shoes, feed pump tooth system, and timing piston: minor polishing

- → Fuel represents typical EU quality
- → Fuel fit for purpose

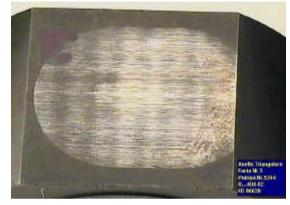


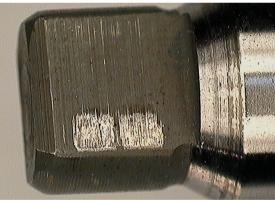
VP44 - Rotary Pump with HFRR 650 µm Fuel

Wear rating = 7.0

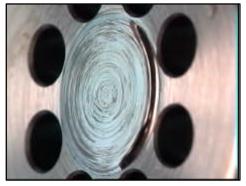
Supply pump, feed pump tooth system, high pressure piston and vanes: severe wear

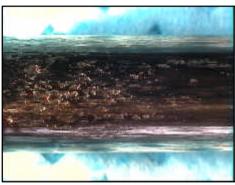
- → Fuel represents worst case U.S. lubricity
- → Fuel unfit for purpose

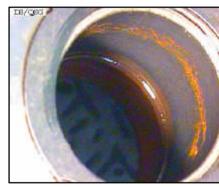



Pump Wear with HFRR Range 400 to 650 µm

Common Rail System with HFRR 460 µm Fuel







- → Fuel represents borderline EU quality
- → Fuel adequate for purpose

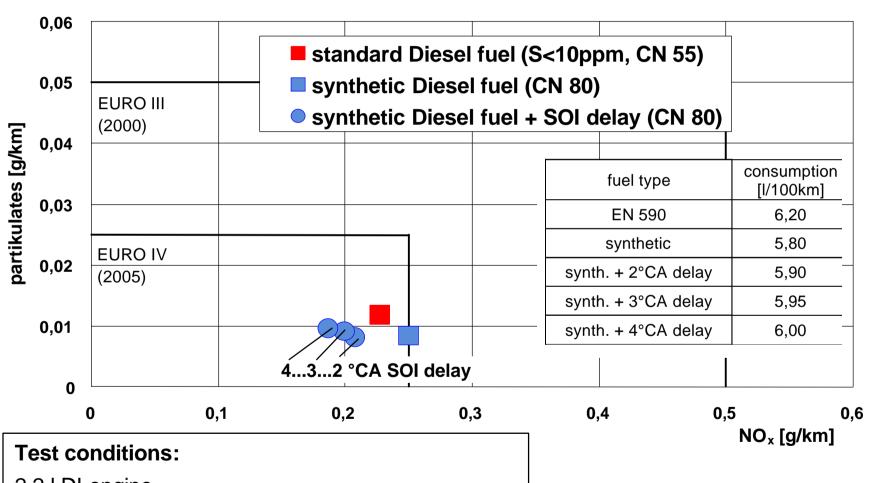
Common Rail System with HFRR 650 µm Fuel

Wear rating = 9.0

Piston: Seizure Piston bottom center: 15 μm; Bearing shell: Seizure; Polygon: ≥ 1000 μm

- → Fuel represents worst case U.S. lubricity
- → Fuel unfit for purpose

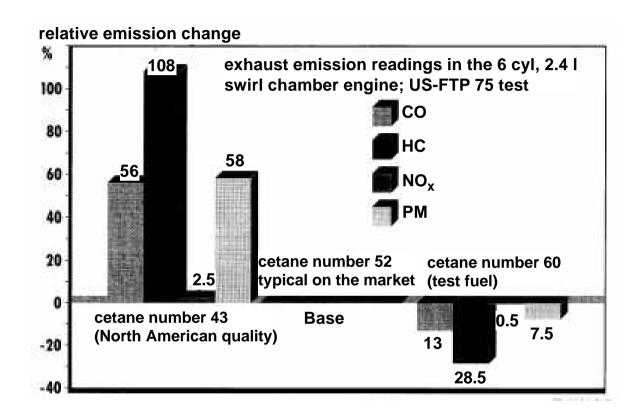
Samples from Summer 2002


Property	Unit	U.S.A.	Europe	Assessment of	
			(EN 590)	U.S.A. Quality	
Density	kg/m³	813 863	820 845	wide range	
Viscosity	c.St. (40 °C)	2.1 3.2	2.0 4.5	o.k.	
Dist. 95% vol rec.	°C	324 344	< 360	o.k.	
Total Aromatic Cont.	%	16 46	n.a.	many high numbers	
Cetane No.		44 57	> 51	many low numbers	
Sulphur	mg/kg	23 416	< 350	not o.k. for aftertreatment	
Water	mg/kg	42 96	< 200	o.k.	
Total Contamination	mg/kg	0.8 3.1	< 24	some high numbers	
(particulates)				(EN590 limit too high)	
Lubricity	μm (HFRR 60C)	351 648	< 460	80% of samples > 460 μm	
Alcohol	% vol.	< 0.1	n.a.	o.k.	

Engine Results for Light Duty Vehicles

NO_x and PM Reduction with CN 55 and 80 Fuels

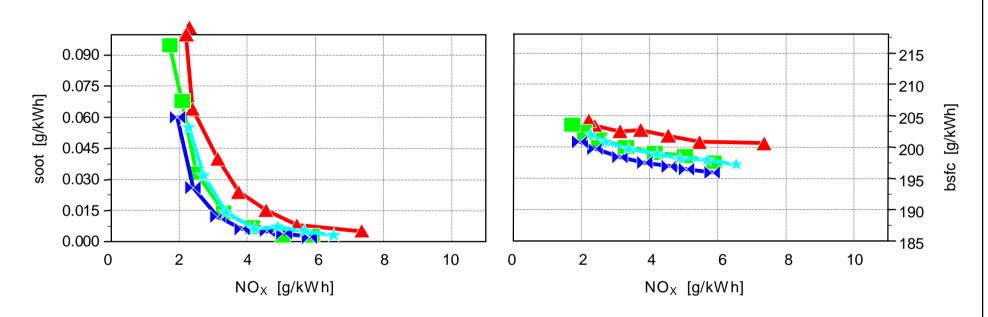
2.2 I DI engine


European test cycle; MNEDC (cold test with PI)

Engine Results for Passenger Cars

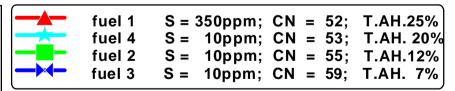
NO_x and PM Reduction with CN 60 Fuels

Test conditions:


6 cyl., 2.4 l, swirl chamber engine U.S.-FTP75 test

Engine Results for Heavy Duty Vehicles

Better Trade-offs for Soot/ NO_x and Fuel Consumption/ NO_x with CN 52 ® 59 Fuels



Test conditions:

1 Cyl. HD engine; V_d ca. 2 I, with EGR

Speed = 1710 rpm, Load = 100%

EGR rate ≤ 18 %

Reasoning for HFRR

- HFRR is an adequate test method
- → HFRR provides customer satisfaction
- → HFRR 460 µm max. known to prevent field problems
- All high-pressure fuel-lubricated injection systems are exceedingly lubricity-sensitive
 - and require clean fuels (no free water and/or contamination)
- Common-rail and Rotary pumps require the same level of lubricity
- Lubricity specification in ASTM D975 needed ASAP
- Spec. should not exceed HFRR: WS1.4 £ 460 µm (ISO 12156-1)
- → Bosch and DFIE industry willing to
 - share and validate experience
 - offer more tests and
 - cooperate with regulators (CARB, ...)

Contacts in Bosch

Klaus Meyer

c/o Robert Bosch GmbH

Corporate Research

Dept. FV/FLM

P.O.B. 106050

D - 70049 Stuttgart

Germany

phone: +49-(0)711-811-6030

fax: +49-(0)711-811-267626

email: klaus.meyer@de.bosch.com

Thomas C. Livingston

c/o Robert Bosch Corporation

Dept. AP/EHD2.1

38000 Hills Tech Drive

Farmington Hills

Michigan 48331

U.S.A.

phone: (248)-553-1386

fax: (248)-324-7288

email: tom.livingston@us.bosch.com